Improving time-to-insight with data
delivery and columnar analysis

K. Choi*, B. Galewsky?®, P. Onyisi®, G. Watts®, M. Weinberg® (and many others)

D. University of Chicago

Snowmass Computational Frontier Workshop

8/11/2020

Classic analysis vs columnar analysis

Classic workflow: xAOD or miniAOD — flat nfuples — skimmed ntuples — histograms — plots

e Starfing formats are prescribed, but enormous variation after that

Standard analysis might have “primary ntuple” to replace
e Write/maintain specialized ntuplization code ~ —x - ’
e Submitjobs to HTCondor by hand 7
® Skim/trim; some data replicated (many times) detector CeNtralized event centrally managed one data fetch private skimin physics analysis
e Selections/cutflows baked into analysis reconstruction dataset (AOD) (written in C++) mini-framework begins
e (an'tadd new variables

with
Columnar workflow: recast data info configuous
columns instead of by event ™

i

e Much more efficient for processing

. . ~ centralized event centrally managed
o Add COlumnS fo EX|S“ng data e reconstruction datasYQt (AOD)
e (Cache only data necessary for computaftion

8/11/2020 Snowmass Computational Frontier Workshop 2 H

pAysics analysis
on query results

presented as frequent data
a queryable service fetches

ServiceX: a columnar data delivery service

Experiment-agnostic service to enable on-demand data delivery from grid to analyzers.

Tailored for nearly-interactive, high-performance array-based analyses

e Provide uniform interface to data storage services; users don’t need to know how or where data is

stored
e (Capable of on-the-fly data transformations into variety of formats (flat ROOT files, Arrow buffers,
Parquet files, Pandas dataframes, ...)
e Pre-processing functionality: Unpack compressed] De";jtr::'::::lc:m:::T,;Tlsj':fion =
formats, filter events in place, compute new variables, = —ar!
project data columns =
Designed specifically for columnar analyses. Start — from
any format, extract only needed columns -
8/11/2020 Snowmass Computational Frontie MRS RGBS 3

ServiceX outline

Users specify events, columns, output format, filters

ServiceX associates request with unique ID
Queries Rucio on behalf of user

Can optionally attach XCache for input caching
Validates request and performs data transformation
Output storage available via MinlO object store or
Kafka message broker

ServiceX under the hood

e System orchestrated via Kubernetes: self-healing
fransformer pods, adapfive based on resources

e Helm chart for easy deployment: supports scaling to
other clusters, including Tier 2s

8/11/2020

ATLAS AOD '

* Under development

Snowmass Computational Frontier Workshop

Arrow buffers

Awkward
array

Pandas
DataFrame

b HELM

docker kubernetes A

MINIO
'/// pon.dos

Apache
Parquet

Slimmed/skim
med N-tuple

ROOT/RDF

Current work and future directions

Have functional transformers for multiple formats across ATLAS and CMS experiments
Moving toward v1.0 release with full documentation and client libraries
Lots of extensions based on community interest!
e Fast, convenient, cached access to skimmed/trimmed data from flat formats (PHYSLite, nanoAOD)
e Explore connections other columnar tools
e Shorf term: can adapt service to existing workflows
o Users bring ntuplizers, we “transformerize” them to use service
e Longer term: scaling to multiple highly configurable instances
o Support scaling to multiple ServiceX deployments across clusters, including Tier 2s
o Users bring only a config; use existing, maintained transformers
o Plan to replace ntuplization, free groups from development/maintenance of ntuplizer code
o Augment flaf formats with custom upstream columns (from xAOD, miniAOD, RECO, ...)

8/11/2020 Snowmass Computational Frontier Workshop

Backup slides

8/11/2020 Snowmass Computational Frontier Workshop

Delivering data to new analysis platforms

First introduced in Feb 2018 whitepaper: delivery of data from
lakes to clients (insulate from upstream systems, remove _

latencies, reformat, filter & possibly accelerate) @ 1S

ServiceX focuses on integration with Rucio and reformatting for
pythonic tools & endstage analysis systems itd e ey

DOMA/AS groups interested in R&D for data delivery for analysis ?- s o
of columnar and other data formats A oo

Delivery Service (iDDS)

B Data Cache Rucio/
Supports multiple input types (xAOD, flat ntuples, ...) and common ® FTs
data mgt (Rucio, XCache) NIl comme e

Tape-backed
Storage

Utilize industry standard tools (GKE, on-prem Kubernetes, Helm,
Kafka, Redis, Spark, ...)

Reproducible, portable deployments

8/11/2020 Snowmass Computational Frontier Workshop

http://bit.ly/atlas-lakes
http://bit.ly/atlas-lakes

e DOMA/AS groups interested in R&D for data
delivery for analysis of columnar and other
data formats

Mark Neubauer

e Supports multiple input types (xAOD, flat kil ora N o B
ntuples, ...) and common data mgt (Rucio,
XCache)

e Utilize industry standard fools (GKE,
on-prem Kubernetes, Helm, Kafka, Redis,
Spark, ...)

y) rski Lindsey Gray Rob Gardner
I l |J a VU kOt IC Princeton University Fermilab University of Chicago

e Reproducible, portable deployments

8/11/2020 Snowmass Computational Frontier Workshop

Columnar data R&D efforts thoupes 2 Py

- / Ary
Spoﬁ’g

Recast data so attributes of physics objects grouped into
contiguous columns, rather than grouping by event and then object
e Much more efficient for processing|
e Updating event content (or corrections) can be done by adding columns to existing data

e Cancache only necessary data for computation; ~ =-----—------------ \ e —
No longer need fo load entire event in memory

~

p
numpy vector operation - fast

L 2

moe-

Event loop

However, this is a significant change for
analyzer

e New syntax can be simpler, more expressive
e Imagine analysis code with no for() loops...

pT n @

O
O
]
]
L) |
L\
0
O
‘J

8/11/2020 Snowmass Computational Frontier Workshop

Loop-less array programming

e But thisis shown to the user as a list containing lists of various lengths:

8/11/2020

In [4]:

In 15132

outf5]:

In [6]:

Out[6]:

In [7]:

Out[7]:

import uproot

f = uproot.open("HZZ-objects.root")

t = f["events"]

a = t.array("muoniso") # muon isolation variable; multiple per event
a Event | Event 2

<JaggedArray [(4.2001534 2.1510613DqZ.1880474] [1.4128217 3.3835042D ... [3.7629452], [0.550810

71, [0.]] at 7b2

The implementation is a fagade: these are not millions of list objects in memory but two arrays with methods to make them behave
like nested lists.

a.offsets

array([O, 2, 3, ..., 3823, 3824, 3825])

a.content

array([4.2001534, 2.1510613, 2.1880474, ..., 3.7629452, 0.5508107, 0.], dtype=float32)

Snowmass Computational Frontier Workshop

Loop-less array programming

Can do all kinds of stuff with optimized linear algebra computations

e Multidimensional slices of data

e FElement-wise operations (e.g. muons_pz = muons_pt * sinh(muons_eta))
e Broadcasting (e.g. muon_phi - 2 * pi)

e Event masking, indexing, array reduction, efc.

But we don’t have a simple rectangular arrays

e Nested variable-size data structures everywhere in HEP
e Jagged arrays handle this with two 1D arrays:
o First array contains long list of values, one per object
o Second array contains breaks that give event boundaries

8/11/2020 Snowmass Computational Frontier Workshop

ServiceX components

Users specify needed events/columns and desired output format

e Use mefadafa tags (real/sim data, year, energy, run number, ...)
e Anyrequired preselection PRP—

: ;0
ServiceX L e Ol
e Queries backend (Rucio) to find data X : [E . S
e Gives unique token to identify request S Servicex v lia £ =
e Access data from storage (optionally cached via R — e I .
@ Cadti D Data fetching Baly Frames %%%Clausters
XCache) O | Ul) -
. mee\:?rma jon Streamin -
e Validates request and extract requested © rexm T Sl B I,
. Arrow buffers
columns, perform data transformations | L -)
future formats ROOT events Specialized
I i ardware resources eg.
e Send output to object store or message broker = S Lp:g N [
status

for analysis :
8/11/2020 Snowmass Computational Frontier Workshop 12 H

ServiceX implementation

System designed to be modular
e (Can switch out modules to transform different types of input data, swap schedulers, ...

Implemented as central service in Kubernetes cluster on Scalable Systems Lab (SSL) cluster

e FEasytodeploy: Just use Helm chart to define plugins to run
e Service can be deployed on variety of systems, including individual laptops
e Reproducible pattern for deployment on Kubernetes clusters (e.g. Tier2s, institutional k8s T3?)

Composed of multiple deployments: REST API server, DID finder, tfransformer, message broker

e APl server: Manages requests via RabbitMQ with Postgres DB

e DID finder: Queries data lake via Rucio, writes ROOT files to XCache

e Transformer: Takes input files from XCache, outputs in various formats (ROOT files with flat trees,
Awkward arrays, Parquet, Arrow tables, ...)

e Kafka manager: Receives input from producer (transformer) and makes topics available fo consumers
(@analysis jobs)

8/11/2020 Snowmass Computational Frontier Workshop 13 H

ServiceX architecture

REST API

DID
Requests Preflight Checker

Validation
Requests
Start Transformations }

Launch

DID Finder

Transformer Manager

Add File
Transformation Transformer
Requests kq fkq

8/11/2020 Snowmass Computational Frontier Workshop

ServiceX in the IRIS-HEP ecosystem

Data Lake ServiceX Cached Distribution Analysis Facility
_
Jjupyter

IR I o
HTConddr

[-L[\ \ % kCIkaI High Throughput Computing

—— sﬁ‘b“r‘lg

IRIS-HEP Scalable Systems Lab

8/11/2020 Snowmass Computational Frontier Workshop 15 H

Connections to DOMA

8

Data Lake ServiceX

)

Cached
Distribution

Analysis
Systems

ServiceXis part of DOMA's iDDS
- feeds data to downstream analysis systems

- enables data transformations developed in _
individual environments to be scaled up to
production-based operations -

8/11/2020

Snowmass Computational Frontier Workshop

ServiceX is being prototyped using IRIS-HEP’s
Scalable Systems Lab

includes reproducible pattern for deployment
entire project implemented as central service in
Kubernetes cluster on SSL

takes advantage of SSL infrastructure support to
develop new features quickly.

ServiceX so far

e Have functional fransformers for multiple formats across multiple experiments
o xAOD/DAOD inputs for ATLAS and miniAOD inputs for CMS
o Flat TTrees and nanoAOD inputs via Uproot tools

e Moving toward ServiceX v1.0 release, new bells and whistles

o Client “frontend”
user interaction | | |

8/11/2020 Snowmass Computational Frontier Workshop

o Admin tools, new user auth
o Configurable pod autoscaling
o Persistent volumes for DB

ServiceX running on SSL: RIVER 2

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

release-name-0-external NodePort 10.104.248.66 <none> 19092:31090/TCP SerVices
release-name-1-external NodePort 10.102.224.207 <none> 19092:31091/TCP

release-name-kafka ClusterIP 10.110.20.190 <none> 9092/TCP

release-name-kafka-exporter ClusterIP 10.97.197.166 <none> 9308/TCP

release-name-kafka-headless ClusterIP None <none> 9092/TCP

release-name-minio ClusterIP 10.97.66.31 <none> 9000/TCP

release-name-postgresql ClusterIP 10.96.46.224 <none> 5432/TCP

release-name-postgresql-headless ClusterIP None <none> 5432/TCP

release-name-rabbitmqg ClusterIP 10.106.225.45 <none> 4369/TCP,5672/TCP,25672/TCP,15672/TCP,9090/TCP
release-name-rabbitmg-headless ClusterIP None <none> 4369/TCP,5672/TCP,25672/TCP,15672/TCP
release-name-servicex-app NodePort 10.102.57.95 <none> 8000:31973/TCP

release-name-zookeeper ClusterIP 10.108.18.68 <none> 2181/TCP

release-name-zookeeper-headless ClusterIP None <none> 2181/TCP,3888/TCP,2888/TCP

C:\Users\ivukotic>kubectl get pods -n servicex
NAME STATUS RESTARTS

release-name-zookeeper-2 Running
transformer-210b2510-0e16-4006-9055-d9addb51fcaa-xp Running

release-name-did-finder-b5b6bfb48-d2bnqg Running 2

e Currently deployed on Kubernetes cluster | Running 3
release-name-kafka-1 Running 1

release-name-kafka-exporter-76cf9c7c69-nbzcq Running 2

On SSL RlVER 2 release-name-minio-5c54b8648-b92n2 Running 0

: . : : release-name-postgresql-0 Running (2}

® Performance tesnng Runnlng Wlth release-name-preflight-cb454d56-f4tmv Error 7
h d d l release-name-rabbitmqg-0 Running (%

Un re S Of tranSformerS On C USTer release-name-servicex-app-9b58465fc-q8xkm Running 2

. . release-name-test-topic-consumer Completed 0

o HaS Prometheus mOnltorlng daShboard release-name-test-topic-consumer-v2 Completed 0
release-name-test-topic-consumer-v3 Completed 0

release-name-test-topic-create-consume-produce Completed (2}

release-name-testclient Error (2]

release-name-zookeeper-0 Running 1

Workloads release-name-zookeeper-1 Running 2

1

2]

ServiceX performance on ATLAS data

e 10TB across 7794 files (- 1.3GB/file)

e 10-column test: reads - 10% of file

o Time for transformer to process file: ~ 13 seconds
m Single-transformer rate: 27.4 MB/s

o Qutput size ~ 3MB (~ 400 reduction from inpuf)

o 400-transformer test completes in < 10 minutes

e 100-column test: reads ~ 30% of file

o Total time to process file: - 31 seconds

m Single-transformer rafe: 11.5 MB/s
o Qutput size ~ 38MB (~ 35 reduction from input)
o 400-transformer test completes in < 25 minutes

8/11/2020 Snowmass Computational Frontier Workshop

Building a CMS transformer

e Setup CMS-specific deployment on RIVER with all the new stuff
o Deployed by Alexx in separate namespace
e The transformer essentially built of three sets of layers

o Thin top layer with a couple of scripts to talk to

8/11/2020

ServiceX and run the ntuplizer (basically one script
run things and one to grab grid proxy)

Layer of ntuplization code; currently using
TreeMaker from Kevin and Alexx as a basis
Base layer for SW framework (needs to be

I

/ ServiceX transformer \

ServiceX scripts

Ntuplizer code (TreeMaker)

IR Software framework (CMSSW)

>

L >

containerized once/version/experiment) —

Snowmass Computational Frontier Workshop

(0

Incorporating the ServiceX frontend libraries

e Installing client library

python -m pip install servicex==2.8.0b%
python -m pip install func-adl-xAOD==1.1.8b4

e (reafing a request framework

import servicex
dataset = ‘mcl5_13TeV:mcl5_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6EL1 Zee.merge.DAOD_STDM3.e3601_s25
sx_endpoint = 'http://rcl-xaod-servicex.uc.ssl-hep.org'
minio_endpoint = 'rcl-xaod-minic.uc.ssl-hep.org’
ds = servicex.ServiceXDataset(
dataset,
servicex.ServiceXAdaptor(sx_endpoint, username='mweinberg', password="XX000000("),
servicex.MinioAdaptor (minio_endpoint)

)
e Using helper functions to make a complex query

. . r=f.ds \
o Make filter and compute new variable " fFherec s e eesanticeezmopsets) |
.Where('lambda j: j.pt() / 180.@ > 38.8').Count() >= 1') \
e Y .Select('lambda e: e.Electrons("Electrons™)")
.Select('lambda e: e.Select(lambdz ele: ele.e
.AsAwkwardArray('EleMyVar') \
.value()

\
ta() * ele.phi())') \

8/11/2020 Snowmass Computational Frontier Workshop

ServiceX demo

This notebook illustrates the use of ServiceX to create a request for specific columns of data from a file stored in Rucio, and the reading of these columns to
create analysis plots.

]
M In [1]: import requests
import tempfile

import pyarrow.parquet as pq

import pyarrow as pa

import awkward

from confluent_kafka import Consumer, KafkaException
import uproot_methods

from coffea import hist

import matplotlib.pyplot as plt

Sample transform request including dataset . ciom e s

We start with the creation of the request inside the service. The user specifies the dataset to be transformed, along with the columns of interest. Here we

to b e tra n Sfo rm e d a n d O u tp ut CO I u m n S transform a 700GB MC dataset of ~ 2 million Z -> ee events distributed across 17 files. The columns from this dataset are then streamed to Kafka, a message

broker which makes them available to the user for analysis.

Meanwhile, the service returns a unique string that serves as the ID of the request. The user can use the request ID to get updates on the progress of the

Development Ve rSion ; Some Of these deCiSionS system and to identify their data in the message broker.
1] L] " . o o 1 o < . i i b 5 =
will be hidden from the user L2 e e e e ke

"columns": "Electrons.pt(), Electrons.eta(), Electrons.phi(), Electrons.e()",
“image": "sslhep/servicex-transformer:ve.l-prep",
"result-destination": "kafka",
"kafka":{
"broker": "release-name-kafka:9892"

5
"chunk-size": 3000,

User receives unique request ID it

37)
print("Request ID:", response.json()['request_id'])

request_id = response.json()["request_id"]
status_endpoint = servicex_endpoint+"/transformation/{}/status".format(request_id)

Request ID: 826ea2b2-0849-4790-9427-afe6498348eb

Get updates on the transformation

.
R u d I l I I e n ta ry u pd ate S O n th e p rog re SS Of th e Once the request is sent, we can get information back on the status of the request. Note that the transformer begins running as soon as the first files from the

dataset are found within Rucio; some of the information does not become available until all the files are discovered (e.g. the total number of files remaining).

tra n Sfo rm ati O n M In [9]: status = requests.get(status_endpoint).json()

print("Request ID: ", status['request-id'])
print("Number of files processed: , status['files-processed'])

To be augmented with status plots T e et o e " statul e reminins)

print("Number of events processed: ", status['stats']['total-events'])

s
print("Size of files processed: ", status['stats']['total-bytes'] / 1.0e9, "GB")
print("Number of batches sent: ", status['stats']['total-messages'])
print("Total time: ", status['stats']['total-time'] / (n_workers * 60), "min")

Request ID: 826ea2b2-0849-4790-9427-afe6498348eb

Number of files processed: 17

Number of files remaining: @
Number of events processed: 1993800

Size of files processed: ©.2005268 GB
Number of batches sent: 666
Total time: 1.2245098039215687 min

8/11/2020 Snowmass Computational Frontier Workshop

22

Analyzing the output

At any time after the files have begun to transform, we may extract some of the data an analyze it. If the string corresponding to the group.id is not changed,
subsequent reads will start from the last batch processed, to ensure there is no double-counting. (In order to read the entire output from the beginning, simply
change the group.id to a different string.)

]
M In []: conf = {'bootstrap.servers': broker_name, 'group.id': "fool",
‘default.topic.config': {'auto.offset.reset': 'smallest'}}
c = Consumer(conf)

c.list_topics().topics[request_id]

c.subscribe([request_id])

timeout = 18.80 # Need a long timeout to allow for partition assignment
running = True

all_mass_hists = None

M In [12]: n_total_events = ©

Output cached in message broker

if msg is None:
running = False

Can be read out asynchronously, re-run oy

raise KafkaException(msg.error())
else:
Proper message
buf = msg.value()
reader = pa.ipc.open_stream(buf)
batches = [b for b in reader]
for batch in batches:
arrays = awkward.fromarrow(batch)
v_particles = uproot_methods.TLorentzVectorArray.from_ptetaphi(
arrays['Electrons_pt'], arrays['Electrons_eta'],
arrays['Electrons_phi'], arrays['Electrons_e']

)
1 v_particles = v_particles[v_particles.counts >= 2]
Ser ana ySIS CO e diparticles = v_particles[:, 8] + v_particles[:, 1]
mass_hist = hist.Hist('Counts', hist.Bin('mass', r'$m_{\mu\mu}$ (Gev)', 150, ©.0, 158.8))
mass_hist.fill(mass=diparticles.mass/1006.0)
if all_mass_hists:
all_mass_hists = all_mass_hists.add(mass_hist)
else:
all_mass_hists = mass_hist

n_total_events += len(arrays.tolist())
print("Number of events: " + str(n_events))

TI me to g o) f rom X AO D or D AO D to ana I yS | S TheGutpiit 3bovelis aggrogala iitora singls hIEtGaFaRTIoF PIGHIRG:

M In [13]: print(n_total_events)

plot only a couple of minutes

1993800

100000

80000

60000

Counts

40000

20000

0 20 40 60 80 100 120 140
My (GeV)

8/11/2020 Snowmass Computational Frontier Workshop 23

Open source technologies used

)

kubernetes docker

pytest

Snowmass Computational Frontier Workshop

